Skip to main content

Distributed data processing with Apache Flink

A new distributed engine named Apache Flink has been making its presence felt in the Hadoop ecosystem primarily due to its faster processing and expressive coding capabilities. To get a better idea on Apache Flink design and integration, HadoopSphere caught up with PMC chair Stephan Ewen and asked him more about the product. This is the first part of the interaction with Ewen where we ask him on technical aspects of Apache Flink.

How does Apache Flink work?


Flink is a distributed engine for batch and stream data processing. Its design draws inspiration from MapReduce, MPP databases, and general dataflow systems. Flink can work completely independent of existing technologies like Hadoop, but can run on top of HDFS and YARN.

Developers write Flink applications in fluent APIs in Java or Scala, based on parallel collections (data sets / data streams). The APIs are designed to feel familiar for people who know Hadoop, Apache Spark, Google Dataflow or SQL. For the latter, Flink adds a twist of SQL-style syntax to the API, with richer data types (beyond key/value pairs) whose fields can be used like attributes in SQL. Flink’s APIs also contain dedicated constructs for iterative programs, to support graph processing and machine learning efficiently.

Rather than executing the programs directly, Flink transforms them into a parallel data flow - a graph of parallel operators and data streams between those operators. The parallel data flow is executed on a Flink cluster, consisting of distributed worker processes, much like a Hadoop cluster.

Flink’s runtime is designed with both efficiency and robustness in mind, integrating various techniques in a unique blend of data pipelining, custom memory management, native iterations, and a specialized serialization framework. The runtime is able to exploit the benefits of in-memory processing, while being robust and efficient with memory and shuffles.

For batch programs, Flink additionally applies a series of optimizations while transforming the user programs to parallel data flow, using techniques from SQL databases, applied to Java/Scala programs. The optimizations are designed to reduce data shuffling or sorting, or automatically cache constant data sets in memory, for iterative programs.

What are the integration options available with Apache Flink?


Unlike MapReduce programs, Flink programs are embedded into regular Java/Scala programs, making them more flexible in interacting with other programs and data sources.

As an example, it is possible to define a program that starts with some HDFS files and joins in a SQL (JDBC) data source. Inside the same program, one can switch from the functional data set API to a graph processing paradigm (vertex centric) to define some computations, and then switch back to the functional paradigm for some the next steps. 

The Flink community is also currently working on integrating SQL statements into the functional API.





Stephan Ewen is committer and Vice President of Apache Flink and co-founder and CTO of data Artisans, a Berlin-based company that is developing and contributing to Apache Flink. Before founding data Artisans, Stephan was leading the development of Flink since the early days of the project (then called Stratosphere). Stephan holds a PhD in Computer Science from the University of Technology, Berlin, and has been with IBM Research and Microsoft Research in the course of several internships.

Comments

Popular posts from this blog

Data deduplication tactics with HDFS and MapReduce

As the amount of data continues to grow exponentially, there has been increased focus on stored data reduction methods. Data compression, single instance store and data deduplication are among the common techniques employed for stored data reduction.
Deduplication often refers to elimination of redundant subfiles (also known as chunks, blocks, or extents). Unlike compression, data is not changed and eliminates storage capacity for identical data. Data deduplication offers significant advantage in terms of reduction in storage, network bandwidth and promises increased scalability.
From a simplistic use case perspective, we can see application in removing duplicates in Call Detail Record (CDR) for a Telecom carrier. Similarly, we may apply the technique to optimize on network traffic carrying the same data packets.
Some of the common methods for data deduplication in storage architecture include hashing, binary comparison and delta differencing. In this post, we focus on how MapReduce and…

Low latency SQL querying on HBase

HBase has emerged as one of the most popular NoSQL database offering distributed, versioned, non-relational tables hosted on commodity hardware. However, with a large set of users coming from a relational SQL world, it made sense to bring the SQL back in this NoSQL. With Apache Phoenix, database professionals get a convenient way to query HBase through SQL in a fast and efficient manner. Continuing our discussion with James Taylor, the founder of Apache Phoenix, we focus on the functional aspects of Phoenix in this second part of interaction.
Although Apache Phoenix started off with distinct low latency advantage, have the other options like Hive/Impala (integrated with HBase) caught up in terms of performance?
No, these other tools such as Hive and Impala have not invested in improving performance against HBase data, so if anything, Phoenix's advantage has only gotten bigger as our performance improves.  See this link for comparison of Apache Phoenix with Apache Hive and Cloudera Im…

Pricing models for Hadoop products

A look at the various pricing models adopted by the vendors in the Hadoop ecosystem. While the pricing models are evolving in this rapid and dynamic market, listed below are some of the major variations utilized by companies in the sphere.
1) Per Node:Among the most common model, the node based pricing mechanism utilizes customized rules for determining pricing per node. This may be as straight forward as pricing per name node and data node or could have complex variants of pricing based on number of core processors utilized by the nodes in the cluster or per user license in case of applications.
2) Per TB:The data based pricing mechanism charges customer for license cost per TB of data. This model usually accounts non replicated data for computation of cost.
3) Subscription Support cost only:In this model, the vendor prefers to give away software for free but charges the customer for subscription support on a specified number of nodes. The support timings and level of support further …