A new distributed engine named Apache Flink has been making its presence felt in the Hadoop ecosystem primarily due to its faster processing and expressive coding capabilities. To get a better idea on Apache Flink design and integration, HadoopSphere caught up with PMC chair Stephan Ewen and asked him more about the product. This is the first part of the interaction with Ewen where we ask him on technical aspects of Apache Flink.
How does Apache Flink work?
Flink is a distributed engine for batch and stream data processing. Its design draws inspiration from MapReduce, MPP databases, and general dataflow systems. Flink can work completely independent of existing technologies like Hadoop, but can run on top of HDFS and YARN.
Developers write Flink applications in fluent APIs in Java or Scala, based on parallel collections (data sets / data streams). The APIs are designed to feel familiar for people who know Hadoop, Apache Spark, Google Dataflow or SQL. For the latter, Flink adds a twist of SQL-style syntax to the API, with richer data types (beyond key/value pairs) whose fields can be used like attributes in SQL. Flink’s APIs also contain dedicated constructs for iterative programs, to support graph processing and machine learning efficiently.
Rather than executing the programs directly, Flink transforms them into a parallel data flow - a graph of parallel operators and data streams between those operators. The parallel data flow is executed on a Flink cluster, consisting of distributed worker processes, much like a Hadoop cluster.
Flink’s runtime is designed with both efficiency and robustness in mind, integrating various techniques in a unique blend of data pipelining, custom memory management, native iterations, and a specialized serialization framework. The runtime is able to exploit the benefits of in-memory processing, while being robust and efficient with memory and shuffles.
For batch programs, Flink additionally applies a series of optimizations while transforming the user programs to parallel data flow, using techniques from SQL databases, applied to Java/Scala programs. The optimizations are designed to reduce data shuffling or sorting, or automatically cache constant data sets in memory, for iterative programs.
What are the integration options available with Apache Flink?
Unlike MapReduce programs, Flink programs are embedded into regular Java/Scala programs, making them more flexible in interacting with other programs and data sources.
As an example, it is possible to define a program that starts with some HDFS files and joins in a SQL (JDBC) data source. Inside the same program, one can switch from the functional data set API to a graph processing paradigm (vertex centric) to define some computations, and then switch back to the functional paradigm for some the next steps.
The Flink community is also currently working on integrating SQL statements into the functional API.
Comments
Post a Comment