Skip to main content

10 parameters for Big Data networks

Big Data and Hadoop clusters involve heavy volume of data and in many instances high velocity in bursty traffic patterns. With these clusters finding in-roads in enterprise data centers, the network designers have a few more requirements to take care. Listed below are 10 parameters to evaluate while designing a network for Big Data and Hadoop cluster.



10) Available and resilient


- Allows network designs with multiple redundant paths between the data nodes than having one or two points of failure.
- Supports upgrades without any disruption to the data nodes


9) Predictable

- Right sizing the network configuration (1GbE/10GbE/100GbE switch capacity) to achieve predictable latency in network
- real time latency may not be required for batch processing


8) Holistic network

- one network can support all workloads : Hadoop, NoSQL, Warehouse, ETL, Web
- support Hadoop and existing storage systems like DAS, SAN, or NAS

7) Multitenant

- be able to consolidate and centralize Big Data projects
- have capability to leverage the fabric across multiple use cases

6) Network partitioning

- support separate Big Data infrastructure from other IT resources on the network
- support privacy and regulatory norms

5) Scale Out

- provide seamless transition as projects increase in size and number
- accommodate new traffic patterns and larger, more complex workloads

4) Converged/ unified fabric network

-  target a flatter and converged network with Big Data as an additional configurable workload
- provide virtual chassis architecture with provision to logically manage access to multiple switches as a single device


3) Network intelligence

- carry any-to-any traffic flows of a Big Data as well as traditional cluster over an Ethernet connection
-  manage single network fabric irrespective of data requirements or storage design



2) Enough bandwidth for data node network

- provision data nodes with enough bandwidth for efficient job completion
- do cost/benefit trade-off on increasing data node uplinks

1) Support bursty traffic

- support loading files into HDFS which triggers replication of data blocks or writing mapper output files and lead to higher network use in a short period of time causing bursts of traffic in the network.
- provide optimal buffering in network devices to absorb bursts



Comments

Popular posts from this blog

In-memory data model with Apache Gora

Open source in-memory data model and persistence for big data framework Apache Gora™ version 0.3, was released in May 2013. The 0.3 release offers significant improvements and changes to a number of modules including a number of bug fixes. However, what may be of significant interest to the DynamoDB community will be the addition of a gora-dynamodb datastore for mapping and persisting objects to Amazon's DynamoDB. Additionally the release includes various improvements to the gora-core and gora-cassandra modules as well as a new Web Services API implementation which enables users to extend Gora to any cloud storage platform of their choice. This 2-part post provides commentary on all of the above and a whole lot more, expanding to cover where Gora fits in within the NoSQL and Big Data space, the development challenges and features which have been baked into Gora 0.3 and finally what we have on the road map for the 0.4 development drive.
Introducing Apache Gora Although there are var…

Amazon DynamoDB datastore for Gora

What was initially suggested during causal conversation at ApacheCon2011 in November 2011 as a “neat idea”, would soon become prime ground for Gora's first taste of participation within Google's Summer of Code program. Initially, the project, titled Amazon DynamoDB datastore for Gora, merely aimed to extend the Gora framework to Amazon DynamoDB. However, it seem became obvious that the issue would include much more than that simple vision.

The Gora 0.3 Toolbox We briefly digress to discuss some other noticeable additions to Gora in 0.3, namely: Modification of the Query interface: The Query interface was amended from Query<K, T> to Query<K, T extends Persistent> to be more precise and explicit for developers. Consequently all implementors and users of the Query interface can only pass object's of Persistent type. Logging improvements for data store mappings: A key aspect of using Gora well is the establishment and accurate definitio…

Data deduplication tactics with HDFS and MapReduce

As the amount of data continues to grow exponentially, there has been increased focus on stored data reduction methods. Data compression, single instance store and data deduplication are among the common techniques employed for stored data reduction.
Deduplication often refers to elimination of redundant subfiles (also known as chunks, blocks, or extents). Unlike compression, data is not changed and eliminates storage capacity for identical data. Data deduplication offers significant advantage in terms of reduction in storage, network bandwidth and promises increased scalability.
From a simplistic use case perspective, we can see application in removing duplicates in Call Detail Record (CDR) for a Telecom carrier. Similarly, we may apply the technique to optimize on network traffic carrying the same data packets.
Some of the common methods for data deduplication in storage architecture include hashing, binary comparison and delta differencing. In this post, we focus on how MapReduce and…