Skip to main content

Twitter's 100th open source GitHub repo - Summingbird


With the open sourcing of Twitter’s Summingbird library this week, we now have another ingenous option to integrate real-time and batch processing. Summingbird allows building MapReduce pipelines with simple primitives and merging data sets with low latency.

Working as an abstraction layer, it aims to separate the MapReduce computation and workflow from physical system layer. Within Twitter it has been used to deploy MapReduce workflow on Hadoop and Storm clusters. More specifically, the team of Oscar Boykin, Sam Ritchie and Ashutosh Singhal have been using this library to write MapReduce “streaming computation once and execute it in batch-mode on Scalding, in realtime mode on Storm, or on both Scalding and Storm in a hybrid batch/realtime mode.”

Summingbird’s real-time MapReduce DSL takes advantage of 3 computation libraries from Twitter:
•    Algebird: Abstract algebra library for Scala targeted at building aggregation systems
•    Bijection: An invertible function that converts back and forth between two types, with the contract that a round-trip through the Bijection will bring back the original object.
•    Storehaus: A library built on top of Twitter's Future that makes it easy to work with asynchronous key value stores.
The library leverages monoids in particular for advanced statistical analysis. Within Algebird, these find application for Bloom filters, HyperLogLog counters and count-min sketches. A monoid is a set that is closed under an associative binary operation and has an identity element I (element of) S such that for all a (element of) S, I a = a I = a.


Summingbird has been used to power Twitter headlines which shows stories related to tweets. It is also believed to be a key driver behind providing near real time views to advertisers on the Twitter advertisement dashboard. Another key milestone that the project would mark is that it shall be Twitter’s 100th public open source code repository on GitHub.

You may follow @summingbird for more updates. The source code has been released this week on https://github.com/twitter/summingbird.


------------------------------
update: 4 Sep 2013: text updated to reflect authors and link after the project release.

image source: Sam Ritchie/Twitter

Comments

Popular articles

5 online tools in data visualization playground

While building up an analytics dashboard, one of the major decision points is regarding the type of charts and graphs that would provide better insight into the data. To avoid a lot of re-work later, it makes sense to try the various chart options during the requirement and design phase. It is probably a well known myth that existing tool options in any product can serve all the user requirements with just minor configuration changes. We all know and realize that code needs to be written to serve each customer’s individual needs.
To that effect, here are 5 tools that could empower your technical and business teams to decide on visualization options during the requirement phase. Listed below are online tools for you to add data and use as playground.
1)      Many Eyes: Many Eyes is a data visualization experiment by IBM Researchandthe IBM Cognos software group. This tool provides option to upload data sets and create visualizations including Scatter Plot, Tree Map, Tag/Word cloud and ge…

Data deduplication tactics with HDFS and MapReduce

As the amount of data continues to grow exponentially, there has been increased focus on stored data reduction methods. Data compression, single instance store and data deduplication are among the common techniques employed for stored data reduction.
Deduplication often refers to elimination of redundant subfiles (also known as chunks, blocks, or extents). Unlike compression, data is not changed and eliminates storage capacity for identical data. Data deduplication offers significant advantage in terms of reduction in storage, network bandwidth and promises increased scalability.
From a simplistic use case perspective, we can see application in removing duplicates in Call Detail Record (CDR) for a Telecom carrier. Similarly, we may apply the technique to optimize on network traffic carrying the same data packets.
Some of the common methods for data deduplication in storage architecture include hashing, binary comparison and delta differencing. In this post, we focus on how MapReduce and…

Hadoop's 10 in LinkedIn's 10

LinkedIn, the pioneering professional social network has turned 10 years old. One of the hallmarks of its journey has been its technical accomplishments and significant contribution to open source, particularly in the last few years. Hadoop occupies a central place in its technical environment powering some of the most used features of desktop and mobile app. As LinkedIn enters the second decade of its existence, here is a look at 10 major projects and products powered by Hadoop in its data ecosystem.
1)      Voldemort: Arguably, the most famous export of LinkedIn engineering, Voldemort is a distributed key-value storage system. Named after an antagonist in Harry Potter series and influenced by Amazon’s Dynamo DB, the wizardry in this database extends to its self healing features. Available in HA configuration, its layered, pluggable architecture implementations are being used for both read and read-write use cases.
2)      Azkaban: A batch job scheduling system with a friendly UI, Azkab…