Skip to main content

Indexing use cases and technical strategies

In this post, let us look at 3 real life indexing use cases. While Hadoop is commonly used for distributed batch index building, it is desirable to optimize the index capability in near real time. We look at some practical real life implementations where the engineers have successfully worked out their technology stack combinations using different products.

(1) Near Real Time index at eBay:

The first use case looks at eBay where HBase is used with a novel approach for building a Near Real Time search index:
- Building a full index takes hours due to data-set size
- # of items changed every minute are much less
- Identify updates in time window t1 – t2 (Timerange scan)
- Build a ‘mini index’ only on last X minutes of changes using Map-Reduce
- Mini indices are copied and consumed in near real time by query servers
- (HBase) Column Family to track last modified time
- Utilize ‘time range scan’ feature of HBase

(2) Distributed indexing strategy at Trovit:

Trovit is a search engine for classified ads of real estate, jobs, cars and vacation rentals. It seems to have arrived at a right mix of Storm, HDFS, HBase and Zookeeper for its architecture. However, particularly, with regards to distributed index strategy, it invokes:
- 2 phases indexing (2 sequential MapReduce jobs) comprising of :
-- Partial indexing: Generate lots of “micro indexes” per each monolithic or sharded index  (MapRduce + Embedded Solr + HDFS)
-- Merge: Groups all the “micro indexes” and merge them to get the production data  (Lucene

(3) Incremental Processing by Google’s Percolator:

The topic would have been incomplete without referring to Google’s Percolator paper which describes a technique for incremental update of index with BigTable.
A Percolator system consists of three binaries that run on every machine in the cluster: a Percolator worker, a Bigtable [9] tablet server, and a GFS [20]  chunkserver. All observers are linked into the Percolator worker, which scans the Bigtable for changed columns (“notifications”) and invokes the corresponding observers as a function call in the worker process. The observers perform transactions by sending read/write RPCs to Bigtable tablet servers, which in turn send read/write RPCs to GFS chunkservers.
Taking cue from this implementation, many variations have been worked out by engineers while leveraging Hadoop HDFS in combination with HBase, Storm and/or Hive.

top image source:


Popular posts from this blog

In-memory data model with Apache Gora

Open source in-memory data model and persistence for big data framework Apache Gora™ version 0.3, was released in May 2013. The 0.3 release offers significant improvements and changes to a number of modules including a number of bug fixes. However, what may be of significant interest to the DynamoDB community will be the addition of a gora-dynamodb datastore for mapping and persisting objects to Amazon's DynamoDB. Additionally the release includes various improvements to the gora-core and gora-cassandra modules as well as a new Web Services API implementation which enables users to extend Gora to any cloud storage platform of their choice. This 2-part post provides commentary on all of the above and a whole lot more, expanding to cover where Gora fits in within the NoSQL and Big Data space, the development challenges and features which have been baked into Gora 0.3 and finally what we have on the road map for the 0.4 development drive.
Introducing Apache Gora Although there are var…

Data deduplication tactics with HDFS and MapReduce

As the amount of data continues to grow exponentially, there has been increased focus on stored data reduction methods. Data compression, single instance store and data deduplication are among the common techniques employed for stored data reduction.
Deduplication often refers to elimination of redundant subfiles (also known as chunks, blocks, or extents). Unlike compression, data is not changed and eliminates storage capacity for identical data. Data deduplication offers significant advantage in terms of reduction in storage, network bandwidth and promises increased scalability.
From a simplistic use case perspective, we can see application in removing duplicates in Call Detail Record (CDR) for a Telecom carrier. Similarly, we may apply the technique to optimize on network traffic carrying the same data packets.
Some of the common methods for data deduplication in storage architecture include hashing, binary comparison and delta differencing. In this post, we focus on how MapReduce and…

Amazon DynamoDB datastore for Gora

What was initially suggested during causal conversation at ApacheCon2011 in November 2011 as a “neat idea”, would soon become prime ground for Gora's first taste of participation within Google's Summer of Code program. Initially, the project, titled Amazon DynamoDB datastore for Gora, merely aimed to extend the Gora framework to Amazon DynamoDB. However, it seem became obvious that the issue would include much more than that simple vision.

The Gora 0.3 Toolbox We briefly digress to discuss some other noticeable additions to Gora in 0.3, namely: Modification of the Query interface: The Query interface was amended from Query<K, T> to Query<K, T extends Persistent> to be more precise and explicit for developers. Consequently all implementors and users of the Query interface can only pass object's of Persistent type. Logging improvements for data store mappings: A key aspect of using Gora well is the establishment and accurate definitio…