Skip to main content

MRQL - a SQL on Hadoop Miracle


Recently, the Apache Incubator accepted a new query engine for Hadoop and Hama, called MRQL (pronounced miracle), which was initially developed in 2011 by Leonidas Fegaras.

MRQL (MapReduce Query Language) is a query processing and optimization system for large-scale, distributed data analysis, built on top of Apache Hadoop and Hama. MRQL has some overlapping functionality with Hive, Impala and Drill, but one major difference is that it can capture many complex data analysis algorithms that can not be done easily in those systems in declarative form. So, complex data analysis tasks, such as PageRank, k-means clustering, and matrix multiplication and factorization, can be expressed as short SQL-like queries, while the MRQL system is able to evaluate these queries efficiently.

Another difference from these systems is that the MRQL system can run these queries in BSP (Bulk Synchronous Parallel) mode, in addition to the MapReduce mode. With BSP mode, it achieves lower latency and higher speed. According to MRQL team, “In near future, MRQL will also be able to process very large data effectively fast without memory limitation and significant performance degradation in the BSP mode”.


As a simple example, the MRQL query in Figure 1 calculates the k-means clustering algorithm.
Figure 1. K-means Clustering Expressed as an MRQL Query
Figure 2. K-Means Clustering Using MR and BSP Modes for 10 steps.
Figure 2 shows the results of evaluating the K-means query using MR and BSP modes for limit (number of iterations) 10. We can see that the BSP evaluation outperforms the MR evaluation by an order of magnitude.

MRQL team also has plans to support additional distributed processing frameworks, such as Spark and OpenMPI in the future. Currently, a number of researchers and developers from various organizations, such as UT Arlington, Oracle, and Cloudera, are involved in the MRQL project. They are looking forward to your contributions.
You can find more information about MRQL at the website:


About the Author:

A creator of Apache Hama, a committer of Apache BigTop and MRQL. Currently he works at Oracle Corporation. 



If you wish to write a post on Hadoop and want to share your experience/expertise, click here.

Comments

Popular posts from this blog

Beyond NSA, the intelligence community has a big technology footprint

While all through the past few days the focus has been on NSA activities, the discussion has often veered around the technologies and products used by NSA. At the same time, a side discussion topic has been the larger technical ecosystem of intelligence units. CIA has been one of the more prolific users of Information Technology by its own admission. To that extent, CIA spinned off a venture capital firm In-Q-Tel in 1999 to invest in focused sector companies. Per Helen Coster of Fortune Magazine, In-Q-Tel (IQT) has been named “after the gadget-toting James Bond character Q”.
In-Q-Tel states on its website that “We design our strategic investments to accelerate product development and delivery for this ready-soon innovation, and specifically to help companies add capabilities needed by our customers in the Intelligence Community”. To that effect, it has made over 200 investments in early stage companies for propping up products. Being a not-for-profit group, unlike Private Venture capi…

Data deduplication tactics with HDFS and MapReduce

As the amount of data continues to grow exponentially, there has been increased focus on stored data reduction methods. Data compression, single instance store and data deduplication are among the common techniques employed for stored data reduction.
Deduplication often refers to elimination of redundant subfiles (also known as chunks, blocks, or extents). Unlike compression, data is not changed and eliminates storage capacity for identical data. Data deduplication offers significant advantage in terms of reduction in storage, network bandwidth and promises increased scalability.
From a simplistic use case perspective, we can see application in removing duplicates in Call Detail Record (CDR) for a Telecom carrier. Similarly, we may apply the technique to optimize on network traffic carrying the same data packets.
Some of the common methods for data deduplication in storage architecture include hashing, binary comparison and delta differencing. In this post, we focus on how MapReduce and…

Top Big Data Influencers of 2015

2015 was an exciting year for big data and hadoop ecosystem. We saw hadoop becoming an essential part of data management strategy of almost all major enterprise organizations. There is cut throat competition among IT vendors now to help realize the vision of data hub, data lake and data warehouse with Hadoop and Spark.
As part of its annual assessment of big data and hadoop ecosystem, HadoopSphere publishes a list of top big data influencers each year. The list is derived based on a scientific methodology which involves assessing various parameters in each category of influencers. HadoopSphere Top Big Data Influencers list reflects the people, products, organizations and portals that exercised the most influence on big data and ecosystem in a particular year. The influencers have been listed in the following categories:

AnalystsSocial MediaOnline MediaProductsTechiesCoachThought LeadersClick here to read the methodology used.

Analysts:Doug HenschenIt might have been hard to miss Doug…