Skip to main content

MRQL - a SQL on Hadoop Miracle


Recently, the Apache Incubator accepted a new query engine for Hadoop and Hama, called MRQL (pronounced miracle), which was initially developed in 2011 by Leonidas Fegaras.

MRQL (MapReduce Query Language) is a query processing and optimization system for large-scale, distributed data analysis, built on top of Apache Hadoop and Hama. MRQL has some overlapping functionality with Hive, Impala and Drill, but one major difference is that it can capture many complex data analysis algorithms that can not be done easily in those systems in declarative form. So, complex data analysis tasks, such as PageRank, k-means clustering, and matrix multiplication and factorization, can be expressed as short SQL-like queries, while the MRQL system is able to evaluate these queries efficiently.

Another difference from these systems is that the MRQL system can run these queries in BSP (Bulk Synchronous Parallel) mode, in addition to the MapReduce mode. With BSP mode, it achieves lower latency and higher speed. According to MRQL team, “In near future, MRQL will also be able to process very large data effectively fast without memory limitation and significant performance degradation in the BSP mode”.


As a simple example, the MRQL query in Figure 1 calculates the k-means clustering algorithm.
Figure 1. K-means Clustering Expressed as an MRQL Query
Figure 2. K-Means Clustering Using MR and BSP Modes for 10 steps.
Figure 2 shows the results of evaluating the K-means query using MR and BSP modes for limit (number of iterations) 10. We can see that the BSP evaluation outperforms the MR evaluation by an order of magnitude.

MRQL team also has plans to support additional distributed processing frameworks, such as Spark and OpenMPI in the future. Currently, a number of researchers and developers from various organizations, such as UT Arlington, Oracle, and Cloudera, are involved in the MRQL project. They are looking forward to your contributions.
You can find more information about MRQL at the website:


About the Author:

A creator of Apache Hama, a committer of Apache BigTop and MRQL. Currently he works at Oracle Corporation. 



If you wish to write a post on Hadoop and want to share your experience/expertise, click here.

Comments

Popular posts from this blog

5 online tools in data visualization playground

While building up an analytics dashboard, one of the major decision points is regarding the type of charts and graphs that would provide better insight into the data. To avoid a lot of re-work later, it makes sense to try the various chart options during the requirement and design phase. It is probably a well known myth that existing tool options in any product can serve all the user requirements with just minor configuration changes. We all know and realize that code needs to be written to serve each customer’s individual needs.
To that effect, here are 5 tools that could empower your technical and business teams to decide on visualization options during the requirement phase. Listed below are online tools for you to add data and use as playground.
1)      Many Eyes: Many Eyes is a data visualization experiment by IBM Researchandthe IBM Cognos software group. This tool provides option to upload data sets and create visualizations including Scatter Plot, Tree Map, Tag/Word cloud and ge…

Data deduplication tactics with HDFS and MapReduce

As the amount of data continues to grow exponentially, there has been increased focus on stored data reduction methods. Data compression, single instance store and data deduplication are among the common techniques employed for stored data reduction.
Deduplication often refers to elimination of redundant subfiles (also known as chunks, blocks, or extents). Unlike compression, data is not changed and eliminates storage capacity for identical data. Data deduplication offers significant advantage in terms of reduction in storage, network bandwidth and promises increased scalability.
From a simplistic use case perspective, we can see application in removing duplicates in Call Detail Record (CDR) for a Telecom carrier. Similarly, we may apply the technique to optimize on network traffic carrying the same data packets.
Some of the common methods for data deduplication in storage architecture include hashing, binary comparison and delta differencing. In this post, we focus on how MapReduce and…

Pricing models for Hadoop products

A look at the various pricing models adopted by the vendors in the Hadoop ecosystem. While the pricing models are evolving in this rapid and dynamic market, listed below are some of the major variations utilized by companies in the sphere.
1) Per Node:Among the most common model, the node based pricing mechanism utilizes customized rules for determining pricing per node. This may be as straight forward as pricing per name node and data node or could have complex variants of pricing based on number of core processors utilized by the nodes in the cluster or per user license in case of applications.
2) Per TB:The data based pricing mechanism charges customer for license cost per TB of data. This model usually accounts non replicated data for computation of cost.
3) Subscription Support cost only:In this model, the vendor prefers to give away software for free but charges the customer for subscription support on a specified number of nodes. The support timings and level of support further …