Skip to main content

Have you used Lua for MapReduce?

Lua as a cross platform programming language has been popularly used in games and embedded systems. However, due to its excellent use for configuration, it has found wider acceptance in other user cases as well.

Lua was inspired from SOL (Simple Object Language) and DEL(Data-Entry Language)  and created by Roberto Ierusalimschy, Waldemar Celes, and Luiz Henrique de Figueiredo at the Pontifical Catholic University of Rio de Janeiro, Brazil.  Roughly translated to ‘Moon’ in Portuguese, it has found many big takers like Adobe, Nginx, Wikipedia.

Quick Overview of key aspects:
8 Basic types
nil, boolean, number, string, function, userdata, thread, and table
3 Kinds of variables
global variables, local variables and table fields
Control structures
- if statements
- while
- repeat
- for
Similar to functions in other languages.
Closures: A function which returns a function
Similar to threads but not exactly the same;
Co-routines are collaborative
Object Oriented Programming
Tables in Lua are objects and have states like objects
Garbage Collection
Lua performs automatic memory management

A good explanation of Lua versus other scripting languages is given in a discussion chain on MediaWiki. Essentially, Lua, over the years, has been gaining wider acceptability due to it’s:
- Extensibility (through Lua or other languages like C)
- Small Size (few MBs)
- Technical USPs (for recursion, first class functions etc)
- Efficient (among the faster scripting languages)
- Portable (various platforms including Windows, Unix flavors, Playstation etc.)

A recent implementation utilizing Lua has been in the Kitten project made by Josh Wills (Cloudera) who is also the author of Apache Crunch. Much like Crunch which eases the task of invoking MapReduce jobs, Kitten simplifies YARN (aka MRv2) applications implementation as a series of patterns. Kitten is written in Java but uses Lua based configuration files for configuring, launching, and monitoring YARN applications. As part of the Lua configuration files, the resources needed by the application are specified.

As Josh writes in the Readme for Kitten project:
Kitten makes extensive use of Lua’s table type to organize information about how a YARN application should be executed… (Lua) has a number of desirable properties for the use case of configuring YARN applications, namely:
  1. It integrates well with both Java and C++. We expect to see YARN applications written in both languages, and expect that Kitten will need to support both. Having a single configuration format for both languages reduces the cognitive overhead for developers.
  2. It is a programming language, but not much of one. Lua provides a complete programming environment when you need it, but mainly stays out of your way and lets you focus on configuration.
  3. It tolerates missing values well. It is easy to reference values in a configuration file that may not be defined until much later. For example, we can specify parameters that will eventually contain the value of the master's hostname and port, but are undefined when the client application is initially configured.
That said, we fully expect that other languages (e.g., Lisp) would make excellent configuration languages for YARN applications…

Another significant experimental project for MRv1 has been Rohit Joshi’s lua-mapreduce. The project inspired by Octopy in Python has been used to demonstrate parallel execution of MapReduce tasks. Source code for this project can also be found on github.

Please note both these projects are still for development environment and we may have to wait a bit more to see successful implementations in MapReduce and Hadoop production environment.


Popular posts from this blog

Beyond NSA, the intelligence community has a big technology footprint

While all through the past few days the focus has been on NSA activities, the discussion has often veered around the technologies and products used by NSA. At the same time, a side discussion topic has been the larger technical ecosystem of intelligence units. CIA has been one of the more prolific users of Information Technology by its own admission. To that extent, CIA spinned off a venture capital firm In-Q-Tel in 1999 to invest in focused sector companies. Per Helen Coster of Fortune Magazine, In-Q-Tel (IQT) has been named “after the gadget-toting James Bond character Q”.
In-Q-Tel states on its website that “We design our strategic investments to accelerate product development and delivery for this ready-soon innovation, and specifically to help companies add capabilities needed by our customers in the Intelligence Community”. To that effect, it has made over 200 investments in early stage companies for propping up products. Being a not-for-profit group, unlike Private Venture capi…

Data deduplication tactics with HDFS and MapReduce

As the amount of data continues to grow exponentially, there has been increased focus on stored data reduction methods. Data compression, single instance store and data deduplication are among the common techniques employed for stored data reduction.
Deduplication often refers to elimination of redundant subfiles (also known as chunks, blocks, or extents). Unlike compression, data is not changed and eliminates storage capacity for identical data. Data deduplication offers significant advantage in terms of reduction in storage, network bandwidth and promises increased scalability.
From a simplistic use case perspective, we can see application in removing duplicates in Call Detail Record (CDR) for a Telecom carrier. Similarly, we may apply the technique to optimize on network traffic carrying the same data packets.
Some of the common methods for data deduplication in storage architecture include hashing, binary comparison and delta differencing. In this post, we focus on how MapReduce and…

Top Big Data Influencers of 2015

2015 was an exciting year for big data and hadoop ecosystem. We saw hadoop becoming an essential part of data management strategy of almost all major enterprise organizations. There is cut throat competition among IT vendors now to help realize the vision of data hub, data lake and data warehouse with Hadoop and Spark.
As part of its annual assessment of big data and hadoop ecosystem, HadoopSphere publishes a list of top big data influencers each year. The list is derived based on a scientific methodology which involves assessing various parameters in each category of influencers. HadoopSphere Top Big Data Influencers list reflects the people, products, organizations and portals that exercised the most influence on big data and ecosystem in a particular year. The influencers have been listed in the following categories:

AnalystsSocial MediaOnline MediaProductsTechiesCoachThought LeadersClick here to read the methodology used.

Analysts:Doug HenschenIt might have been hard to miss Doug…