Skip to main content

Adapting MapReduce for realtime apps

As much as MapReduce is popular, so much is the discussion to make it even better from a generalized approach to higher performance oriented approach. We will be discussing a few frameworks which have tried to adapt MapReduce further for higher performance orientation.

The first post in this series tries will discuss AMREF, an Adaptive MapReduce Framework designed for real time data intensive applications. (published in the paper Fan Zhang, Junwei Cao, Xiaolong Song, Hong Cai, Cheng Wu: AMREF: An Adaptive MapReduce Framework forReal Time Applications. GCC 2010: 157-162.)

It is always a tricky question on how many splitters, mappers and reducers must be there for an optimal configuration. Faced with the same challenge, the authors felt it is normally difficult to optimally predefine the number in order to maximize the operation performance. The perennial dilemma according to them is how to balance between full utilization of the nodes and the waiting period for an incoming event.

Splitter, as per the authors, should take the additional responsibility to see which mapper is faster or slower and accordingly the files need to be allocated to each mapper. For a faster mapper, the files will be relatively more than other mappers.

As per the design proposed by authors, the ‘Adaptive splitter’ would in stage 1 distribute
the input file evenly to the mappers. Next in stage 2, different mappers with different processing capacity would have different length of input files. Thereafter, in stage 3, a new input file is distributed to the three mappers according to their processing capacity.

In the mapping stage, ‘Adaptive mapper’ design increases or decreases the mappers based on the run time application. An adaptive mapper is added dynamically if it is observed that there is an overburden on the other mappers, or an unbalanced workload between mappers and reducers. Similarly the design proposed to decrease adaptively a mapper when the utilization is less.

For the ‘Adaptive Reducers’, when the output of mappers are too fast for the number of reducers, an adaptive reducer is added in parallel to produces output. Another variant could use a sequential reducer as an adaptive addition where the input to the reducer would be the output of the earlier reducers.

The authors used feedback control and stochastic control in their experiments with this design approach. In a positive feedback loop, if the utilization of the 95% servers or above in splitting stage surpassed 90%, another splitting server node was added to optimize the workload. Similarly, if the utilization of the 95% servers or above in splitting stage was lower than 20%, they adaptively decreased one splitting node. Similar rules were applied to map and reduce stage.

Another interesting technique which was employed included Stochastic control. In this technique, they relied on prediction based on the incoming data, including the incoming time, the amounts, and traffic spikes to adjust the network for moderating the mutation of incoming data

As reported in their conclusion, they found Kalman filter prediction to be much more effective than Smooth filter prediction. Kalman filter named after Rudolf (Rudy) E. Kálmán has "common application for guidance, navigation and control of vehicles, particularly aircraft and spacecraft. Furthermore, the Kalman filter is a widely applied concept in time series".  We will be covering about Kalman filter in out subsequent posts because of the huge interest and discussion that it has been generating in the circles of late.

Overall, the Adaptive MapReduce approach presented by the authors offers interesting options to the application designer. As claimed, it could have an impact in real time applications though the real test would come in the commercial implementations subjected to huge data sets on real time.


Popular posts from this blog

Beyond NSA, the intelligence community has a big technology footprint

While all through the past few days the focus has been on NSA activities, the discussion has often veered around the technologies and products used by NSA. At the same time, a side discussion topic has been the larger technical ecosystem of intelligence units. CIA has been one of the more prolific users of Information Technology by its own admission. To that extent, CIA spinned off a venture capital firm In-Q-Tel in 1999 to invest in focused sector companies. Per Helen Coster of Fortune Magazine, In-Q-Tel (IQT) has been named “after the gadget-toting James Bond character Q”.
In-Q-Tel states on its website that “We design our strategic investments to accelerate product development and delivery for this ready-soon innovation, and specifically to help companies add capabilities needed by our customers in the Intelligence Community”. To that effect, it has made over 200 investments in early stage companies for propping up products. Being a not-for-profit group, unlike Private Venture capi…

Data deduplication tactics with HDFS and MapReduce

As the amount of data continues to grow exponentially, there has been increased focus on stored data reduction methods. Data compression, single instance store and data deduplication are among the common techniques employed for stored data reduction.
Deduplication often refers to elimination of redundant subfiles (also known as chunks, blocks, or extents). Unlike compression, data is not changed and eliminates storage capacity for identical data. Data deduplication offers significant advantage in terms of reduction in storage, network bandwidth and promises increased scalability.
From a simplistic use case perspective, we can see application in removing duplicates in Call Detail Record (CDR) for a Telecom carrier. Similarly, we may apply the technique to optimize on network traffic carrying the same data packets.
Some of the common methods for data deduplication in storage architecture include hashing, binary comparison and delta differencing. In this post, we focus on how MapReduce and…

Top Big Data Influencers of 2015

2015 was an exciting year for big data and hadoop ecosystem. We saw hadoop becoming an essential part of data management strategy of almost all major enterprise organizations. There is cut throat competition among IT vendors now to help realize the vision of data hub, data lake and data warehouse with Hadoop and Spark.
As part of its annual assessment of big data and hadoop ecosystem, HadoopSphere publishes a list of top big data influencers each year. The list is derived based on a scientific methodology which involves assessing various parameters in each category of influencers. HadoopSphere Top Big Data Influencers list reflects the people, products, organizations and portals that exercised the most influence on big data and ecosystem in a particular year. The influencers have been listed in the following categories:

AnalystsSocial MediaOnline MediaProductsTechiesCoachThought LeadersClick here to read the methodology used.

Analysts:Doug HenschenIt might have been hard to miss Doug…