Skip to main content

Analogies - Romans, Train, Dabbawalla, Oil Refinery, Laundry - and Hadoop


Let’s understand Hadoop, MapReduce with a few fun trivia analogies. They may not match perfectly with scientific definitions – but let the purists don’t fret and sweat. This is to give a simplistic idea to those who are still uninitiated in Hadoop. Enjoy and learn with this weekend read.

“As an analogy, you can think of map and reduce tasks as the way a cen­sus was conducted in Roman times, where the census bureau would dis­patch its people to each city in the empire. Each census taker in each city would be tasked to count the number of people in that city and then return their results to the capital city. There, the results from each city would be reduced to a single count (sum of all cities) to determine the overall popula­tion of the empire. This mapping of people to cities, in parallel, and then com­bining the results (reducing) is much more efficient than sending a single per­son to count every person in the empire in a serial fashion.”




 "
  • Just like HDFS slices and distributes the chunk of data to individual nodes, each household submits the lunchbox to a Dabbawala.
  • All the lunchboxes are collected at the common place for tagging them and to put them into carriages with unique codes. This is the job of the Mapper!
  • Based on the code, carriages that need to go to the common destination are sorted and on-boarded to the respective trains. This is called Shuffle and Sort phase in MapReduce.
  • At each railway station, the Dabbawala picks up the carriage and delivers each box in that to respective customers. This is the Reduce phase."




Comments

  1. This is to give a simplistic idea to those who are still uninitiated in Hadoop. Enjoy and learn with this weekend read. Ascenergy

    ReplyDelete

Post a Comment

Popular posts from this blog

In-memory data model with Apache Gora

Open source in-memory data model and persistence for big data framework Apache Gora™ version 0.3, was released in May 2013. The 0.3 release offers significant improvements and changes to a number of modules including a number of bug fixes. However, what may be of significant interest to the DynamoDB community will be the addition of a gora-dynamodb datastore for mapping and persisting objects to Amazon's DynamoDB. Additionally the release includes various improvements to the gora-core and gora-cassandra modules as well as a new Web Services API implementation which enables users to extend Gora to any cloud storage platform of their choice. This 2-part post provides commentary on all of the above and a whole lot more, expanding to cover where Gora fits in within the NoSQL and Big Data space, the development challenges and features which have been baked into Gora 0.3 and finally what we have on the road map for the 0.4 development drive.
Introducing Apache Gora Although there are var…

Top Big Data Influencers of 2015

2015 was an exciting year for big data and hadoop ecosystem. We saw hadoop becoming an essential part of data management strategy of almost all major enterprise organizations. There is cut throat competition among IT vendors now to help realize the vision of data hub, data lake and data warehouse with Hadoop and Spark.
As part of its annual assessment of big data and hadoop ecosystem, HadoopSphere publishes a list of top big data influencers each year. The list is derived based on a scientific methodology which involves assessing various parameters in each category of influencers. HadoopSphere Top Big Data Influencers list reflects the people, products, organizations and portals that exercised the most influence on big data and ecosystem in a particular year. The influencers have been listed in the following categories:

AnalystsSocial MediaOnline MediaProductsTechiesCoachThought LeadersClick here to read the methodology used.

Analysts:Doug HenschenIt might have been hard to miss Doug…

5 online tools in data visualization playground

While building up an analytics dashboard, one of the major decision points is regarding the type of charts and graphs that would provide better insight into the data. To avoid a lot of re-work later, it makes sense to try the various chart options during the requirement and design phase. It is probably a well known myth that existing tool options in any product can serve all the user requirements with just minor configuration changes. We all know and realize that code needs to be written to serve each customer’s individual needs.
To that effect, here are 5 tools that could empower your technical and business teams to decide on visualization options during the requirement phase. Listed below are online tools for you to add data and use as playground.
1)      Many Eyes: Many Eyes is a data visualization experiment by IBM Researchandthe IBM Cognos software group. This tool provides option to upload data sets and create visualizations including Scatter Plot, Tree Map, Tag/Word cloud and ge…