Skip to main content

Analogies - Romans, Train, Dabbawalla, Oil Refinery, Laundry - and Hadoop


Let’s understand Hadoop, MapReduce with a few fun trivia analogies. They may not match perfectly with scientific definitions – but let the purists don’t fret and sweat. This is to give a simplistic idea to those who are still uninitiated in Hadoop. Enjoy and learn with this weekend read.

“As an analogy, you can think of map and reduce tasks as the way a cen­sus was conducted in Roman times, where the census bureau would dis­patch its people to each city in the empire. Each census taker in each city would be tasked to count the number of people in that city and then return their results to the capital city. There, the results from each city would be reduced to a single count (sum of all cities) to determine the overall popula­tion of the empire. This mapping of people to cities, in parallel, and then com­bining the results (reducing) is much more efficient than sending a single per­son to count every person in the empire in a serial fashion.”




 "
  • Just like HDFS slices and distributes the chunk of data to individual nodes, each household submits the lunchbox to a Dabbawala.
  • All the lunchboxes are collected at the common place for tagging them and to put them into carriages with unique codes. This is the job of the Mapper!
  • Based on the code, carriages that need to go to the common destination are sorted and on-boarded to the respective trains. This is called Shuffle and Sort phase in MapReduce.
  • At each railway station, the Dabbawala picks up the carriage and delivers each box in that to respective customers. This is the Reduce phase."




Comments

  1. This is to give a simplistic idea to those who are still uninitiated in Hadoop. Enjoy and learn with this weekend read. Ascenergy

    ReplyDelete

Post a Comment

Popular posts from this blog

Data deduplication tactics with HDFS and MapReduce

As the amount of data continues to grow exponentially, there has been increased focus on stored data reduction methods. Data compression, single instance store and data deduplication are among the common techniques employed for stored data reduction.
Deduplication often refers to elimination of redundant subfiles (also known as chunks, blocks, or extents). Unlike compression, data is not changed and eliminates storage capacity for identical data. Data deduplication offers significant advantage in terms of reduction in storage, network bandwidth and promises increased scalability.
From a simplistic use case perspective, we can see application in removing duplicates in Call Detail Record (CDR) for a Telecom carrier. Similarly, we may apply the technique to optimize on network traffic carrying the same data packets.
Some of the common methods for data deduplication in storage architecture include hashing, binary comparison and delta differencing. In this post, we focus on how MapReduce and…

5 online tools in data visualization playground

While building up an analytics dashboard, one of the major decision points is regarding the type of charts and graphs that would provide better insight into the data. To avoid a lot of re-work later, it makes sense to try the various chart options during the requirement and design phase. It is probably a well known myth that existing tool options in any product can serve all the user requirements with just minor configuration changes. We all know and realize that code needs to be written to serve each customer’s individual needs.
To that effect, here are 5 tools that could empower your technical and business teams to decide on visualization options during the requirement phase. Listed below are online tools for you to add data and use as playground.
1)      Many Eyes: Many Eyes is a data visualization experiment by IBM Researchandthe IBM Cognos software group. This tool provides option to upload data sets and create visualizations including Scatter Plot, Tree Map, Tag/Word cloud and ge…

Pricing models for Hadoop products

A look at the various pricing models adopted by the vendors in the Hadoop ecosystem. While the pricing models are evolving in this rapid and dynamic market, listed below are some of the major variations utilized by companies in the sphere.
1) Per Node:Among the most common model, the node based pricing mechanism utilizes customized rules for determining pricing per node. This may be as straight forward as pricing per name node and data node or could have complex variants of pricing based on number of core processors utilized by the nodes in the cluster or per user license in case of applications.
2) Per TB:The data based pricing mechanism charges customer for license cost per TB of data. This model usually accounts non replicated data for computation of cost.
3) Subscription Support cost only:In this model, the vendor prefers to give away software for free but charges the customer for subscription support on a specified number of nodes. The support timings and level of support further …