Skip to main content

Facebook predicts what you like to see on web page


The conventional wisdom of HTTP web page request between browser and servers is to transmit the response as whole in the form of a structured mark up language. However, this may not be how it works in today’s social networks.

Today’s smart social networks like Facebook use Hadoop and Hive driven intelligence to predict which resources of web page have a predetermined likelihood to be included in a response to a future request. Resources which includes java-scripts, style sheets, image etc are identified based on map-reduce and other computational algorithms which run on distributed systems analyzing billions of entries in the resource logs. These identified resources are stored/cached in server hash maps and the page is rendered in phase wise manner.


This method and system is described in US patent 8,108,377 Predictive resource identification and phased delivery of structured documents (Inventors: Jiang; Changhao, Wei; Xiaoliang; Assignee: Facebook, Inc. (Palo Alto, CA)) .

As the disclosure goes on to describe Hadoop and Hive usage, we find that
“…the resource logging, analyzing, filtering, predicting, and/or selecting operations discussed above can be implemented using Hive to accomplish ad hoc querying, summarization and data analysis, as well as using as incorporating statistical modules by embedding mapper and reducer scripts, such as Python or Perl scripts that implement a statistical algorithm. Other development platforms that can leverage Hadoop or other Map-Reduce execution engines can be used as well…”


Must say, this is one of the smart implementations of predictive computation which is reducing latency, limiting network load and overall leading to a better user experience. Remember, since this is patented, check with assignee before any commercial usage. 

Comments

Post a Comment

Popular posts from this blog

In-memory data model with Apache Gora

Open source in-memory data model and persistence for big data framework Apache Gora™ version 0.3, was released in May 2013. The 0.3 release offers significant improvements and changes to a number of modules including a number of bug fixes. However, what may be of significant interest to the DynamoDB community will be the addition of a gora-dynamodb datastore for mapping and persisting objects to Amazon's DynamoDB. Additionally the release includes various improvements to the gora-core and gora-cassandra modules as well as a new Web Services API implementation which enables users to extend Gora to any cloud storage platform of their choice. This 2-part post provides commentary on all of the above and a whole lot more, expanding to cover where Gora fits in within the NoSQL and Big Data space, the development challenges and features which have been baked into Gora 0.3 and finally what we have on the road map for the 0.4 development drive.
Introducing Apache Gora Although there are var…

Top Big Data Influencers of 2015

2015 was an exciting year for big data and hadoop ecosystem. We saw hadoop becoming an essential part of data management strategy of almost all major enterprise organizations. There is cut throat competition among IT vendors now to help realize the vision of data hub, data lake and data warehouse with Hadoop and Spark.
As part of its annual assessment of big data and hadoop ecosystem, HadoopSphere publishes a list of top big data influencers each year. The list is derived based on a scientific methodology which involves assessing various parameters in each category of influencers. HadoopSphere Top Big Data Influencers list reflects the people, products, organizations and portals that exercised the most influence on big data and ecosystem in a particular year. The influencers have been listed in the following categories:

AnalystsSocial MediaOnline MediaProductsTechiesCoachThought LeadersClick here to read the methodology used.

Analysts:Doug HenschenIt might have been hard to miss Doug…

5 online tools in data visualization playground

While building up an analytics dashboard, one of the major decision points is regarding the type of charts and graphs that would provide better insight into the data. To avoid a lot of re-work later, it makes sense to try the various chart options during the requirement and design phase. It is probably a well known myth that existing tool options in any product can serve all the user requirements with just minor configuration changes. We all know and realize that code needs to be written to serve each customer’s individual needs.
To that effect, here are 5 tools that could empower your technical and business teams to decide on visualization options during the requirement phase. Listed below are online tools for you to add data and use as playground.
1)      Many Eyes: Many Eyes is a data visualization experiment by IBM Researchandthe IBM Cognos software group. This tool provides option to upload data sets and create visualizations including Scatter Plot, Tree Map, Tag/Word cloud and ge…